Bài toán: Cho $a,b,c$ là các số thực dương thỏa mãn $$a^2+b^2+c^2 = 2(ab+bc+ca).$$ Tìm giá trị nhỏ nhất của $$P=a+b+c+\dfrac{1}{abc}-\dfrac{9}{a+b+c}.$$
Trích đề thi chọn HSG Quốc Gia môn Toán – TP Hà Nội – 2014-2015 Continue reading
Bài toán: Cho $a,b,c$ là các số thực dương thỏa mãn $$a^2+b^2+c^2 = 2(ab+bc+ca).$$ Tìm giá trị nhỏ nhất của $$P=a+b+c+\dfrac{1}{abc}-\dfrac{9}{a+b+c}.$$
Trích đề thi chọn HSG Quốc Gia môn Toán – TP Hà Nội – 2014-2015 Continue reading
Đề bài
Tìm giá trị lớn nhất của biểu thức $$P=\frac{{{x}^{3}}{{y}^{4}}{{z}^{3}}}{({{x}^{4}}+{{y}^{4}}){{(xy+{{z}^{2}})}^{3}}}+\frac{{{y}^{3}}{{z}^{4}}{{x}^{3}}}{({{y}^{4}}+{{z}^{4}}){{(yz+{{x}^{2}})}^{3}}}+\frac{{{z}^{3}}{{x}^{4}}{{y}^{3}}}{({{z}^{4}}+{{x}^{4}}){{(zx+{{y}^{2}})}^{3}}}$$ với $x,y,z$ là các số thực dương. Continue reading